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Lecture 10
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Lemma of IPW theorem

Lemma
Consider weights on the form

g(A)
∏K

k=0
p(Ak | Lk ,Ak→1)

,

then

ba(y) =
1

g(a)
E
{

g(A)I (A = a)
∏K

k=0
p(Ak | Lk ,Ak→1)

p(y | LK ,AK )

}
.
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Proof.

ba(y)

=
∑

lK

p(y | lK , aK )
K∏

j=0

p(lj | l j→1, aj→1)

=
∑

lK

p(y | lK , aK )
∏K

k=0
p(ak | lk , ak→1)∏K

k=0
p(ak | lk , ak→1)

K∏

j=0

p(lj | l j→1, aj→1)

=
∑

lK

1
∏K

k=0
p(ak | lk , ak→1)

p(y | lK , aK )
K∏

k=0

p(ak | lk , ak→1)
K∏

j=0

p(lj | l j→1, aj→1)

=
∑

lK

1
∏K

k=0
p(ak | lk , ak→1)

p(y , lK , aK ).
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Proof.

=
∑

lK

1
∏K

k=0
p(ak | lk , ak→1)

p(y , lK , aK )

=
∑

lK

∑

a→

I (a↑ = a)
∏K

k=0
p(a↑k | lk , a↑k→1)

p(y , lK , a
↑
K )

=
1

g(a)

∑

lK

∑

a→

g(a↑)I (a↑ = a)
∏K

k=0
p(a↑k | lk , a↑k→1)

p(y | lK , a↑K )p(lK , a↑K )

=
1

g(a)
E
{

g(A)I (A = a)
∏K

k=0
p(Ak | Lk ,Ak→1)

p(y | LK ,AK )

}
.

where the expectation is taken over AK , LK under the distribution that generated
the observed data, and positivity is used in the last line.

So the lemma from Slide 270 follows.
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Another (simple) lemma

Lemma (individuals with A = a in the psedopopulation)

E
{

g(A)I (A = a)
∏K

k=0
p(Ak | Lk ,Ak→1)

}
= g(a).

Proof.
We use that the g-formula is a density, i.e. that

∫
ba(y)dy = 1,

1 =

∫
ba(y)dy =

∫
1

g(a)
E
{

g(A)I (A = a)
∏K

k=0
p(Ak | Lk ,Ak→1)

p(y | LK ,AK )

}
dy

g(a) = E
{

g(A)I (A = a)
∏K

k=0
p(Ak | Lk ,Ak→1)

}
,

where we used that integrals of sums are sums of integrals.

Mats Stensrud Randomisation and Causation Spring 2025 273 / 422



A Theorem

Now we will show that E(ba(Y )) = Eps(Y | A = a).

Proof.

∫
yba(y)dy

=

∫
y

1

g(a)
E
{

g(A)I (A = a)
∏K

k=0
p(Ak | Lk ,Ak→1)

p(y | LK ,AK )

}
dy

=
1

g(a)

∫
E
{

g(A)I (A = a)
∏K

k=0
p(Ak | Lk ,Ak→1)

yp(y | LK ,AK )

}
dy

=
1

g(a)
E
{

g(A)I (A = a)
∏K

k=0
p(Ak | Lk ,Ak→1)

Y

}
(by def of expectation)
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Finally: A proof of the Theorem

Proof.

plugging in for g(a) in the Expression from the Corollary on slide 274,

=

E
{

g(A)I (A=a)∏K
k=0

p(Ak |Lk ,Ak→1)
Y

}

E
{

g(A)I (A=a)∏K
k=0

p(Ak |Lk ,Ak→1)

} (i.e. an IPW formula)

=
Eps(I (A = a)Y )

Pps(A = a)

= Eps(Y | A = a).

This allows us to say ”association is causation” in the pseudopopulation.
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PS: Pseudopopulation vs observed population

The lemma allows us to characterize the number of treated in the
pseudopopulation vs the original population. Recall that E(I (A = a)) is
the fraction of individuals with A = a in the observed population. Let n be
the total size of the observed population. Then

n → E(I (A = a))

is the expected number of individuals with A = a in the observed
population and

n → E
{

g(A)I (A = a)
∏K

k=0
p(Ak | Lk ,Ak→1)

}
= n → g(a)

is the expected number of individuals with A = a in the pseudopopulation.
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We can encode various assumptions in MSMs

Suppose we hypothesize that the causal e!ect of treatment history a on the
mean of Y is a linear function of the cumulative exposures, i.e.

cum(a) =
K∑

k=0

ak .

This hypothesis is included in the MSM

E(Y a) = Eps(Y | A = a) = ω0 + ω1cum(a).

That is, we model the marginal mean of the counterfactuals Y a. Whereas
there are 2K treatment combinations (unknowns on the left-hand side of the
equation), we have now reduced the model such that there are only two
unknowns on the right-hand side of the equation.

Obviously, this model could also be misspecified, e.g. if the counterfactual
outcome depends on some other function of the regime or if the outcome
depends nonlinearly on the cumulative exposure.
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Motivating the weighted regressions

Lemma (Result for weighted least squares)

Suppose excheangeability, consistency and positivity hold. Then

Eps(Y | A = a) =
∫
yb(a)dy = E(Y a). Then,

E
{

g(A)
∏K

k=0
p(Ak | Lk ,Ak→1)

[Y ↑ E(Y A)]

}

Eps

{
[Y ↑ E(Y A)]

}

=Eps

{
Eps

{
[Y ↑ E(Y A)] | A

}}

=0, because the inner expectation above is 0.
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Consider now the estimating equations

We use the results from the previous slide and the parameterisation

E(Y a) = ω0 + ω1cum(a).

Now, consider the (two-dimensional) estimating equation

n∑

i=1

M(Lk,i ,Ai ; ω0, ω1, ε) = 0,

where

M(Lk ,A; ω0, ω1, ε) =
g(A)∏K

k=0
p(Ak |Lk ,Ak→1;ω)

(
1

cum(A)

)
[Y ↑ ω0 ↑ ω1cum(A)].

This is an estimating equation for the weighted least squares estimator,
where we first must have solved the estimating equations for the
propensities. Together, we denote the estimating equations for the
counterfactual model and the propensity scores a ”stacked estimating
equation”.
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Side note: parametric g-formula estimator

Another estimation strategy is to do so-called g-computation, using the
time-varying g-formula,

∫
ba(y)dy

=

∫ ∑

lK

p(y | lK , aK )
K∏

j=0

p(lj | l j→1, aj→1)dy ,

to motivate the parametric g-formula estimator

∑

i

E(Y | LK ,i , aK ;ϑy )
K∏

j=0

p(Lj ,i | Lj→1,i , aj→1;ϑlj ).
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Null hypotheses in MSMs

Note that under the null hypothesis of no e!ect of any ak , k = 0, . . . ,K
the MSM is correctly specified with

E(Y a) = ω0.

However, the standardisation estimator (parametric g-formula estimator)
su!ers from the so-called ”g-null-paradox”. That is, it is possible to show
that it will always reject the null hypothesis – even if the null hypothesis is
true – when the sample size grows.
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Treatment-confounder feedback

A0 a0 A
a0
1

a1

L
a0

Y
a0,a1

H

we cannot adjust for L using traditional methods, like stratification,
outcome regression, and matching.

But we read o! that Y a0,a1 ↓↓ A0 and Y
a0,a1 ↓↓ A

a0
1

| La0
0
,A0 = a0,

and we can fit MSMs.
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MSMs and e!ect modification

Suppose that an investigator believes that for a particular component V of the
vector of baseline covariates L0, there might exist qualitative e!ect modification
with respect to V . For example, suppose that A = 1 is harmful to subjects with
V = 0 and beneficial to those with V = 1.
To examine this hypothesis, we would elaborate the MSM,

E(Y a | V ) = ω0 + ω1cum(a) + ω2V + ω3cum(a)V .

Then we have qualitative e!ect modification if sign(ω1) ↔= sign(ω1 + ω3).
We can e.g. use the weights,

∏K
k=0

p(Ak | V ,Ak→1)∏K
k=0

p(Ak | Lk ,Ak→1)

in a weighted least squares regression model.
One thing to remember: Here, IPW is used to adjust for confounding and
regression modelling is used to study e!ect modification.
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MSMs and direct e!ects

To illustrate a point, consider the saturated MSM for two binary treatments A0,
A1,

E(Y a) = E(Y a0,a1) = ω0 + ω1a0 + ω2a1 + ω3a0a1.

Now, the direct e!ect of A0 when A1 is set to 1 is E(Y 1,1)↑ E(Y 0,1).
How do we articulate the hypothesis that E(Y 1,1) = E(Y 0,1)?

E(Y 1,1) = E(Y 0,1)

ω0 + ω1 + ω2 + ω3 = ω0 + ω2

0 = ω1 + ω3
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Optimal regimes and dynamic MSMs

Suppose that we aim to find the optimal treatment regime g
↑ in a given

class of regimes {g = x : x ↗ X}, where |X | = m. Suppose that
x ↗ {0, 1, . . . , 999}. Let n = 2000 individuals.

Suppose I come up with the following strategy: Run an experiment
and randomly assign the regime g .

Maximize Ê(Y | X = x).

Problem: We have m regimes, but only 2000 people so Ê(Y | X = x)
will be too variable...we will expect to have two people receiving the
regime.

Running example: Once we have started treatment (say, antiretroviral
therapy in patients with HIV), then we never stop treatment. The
question is: what is the best X to start treatment?
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Dynamic MSMs

Constructing an MSM allows us to impose assumptions, and then borrow
strength across the regimes g , for example by assuming that
E(Y | X = x) = E(Y x) is smooth in x .

Note that we have to do this even if the data are from an experiment.

Idea: for example, suppose we fit the model

E(Y x) = ω0 + ω1x + ω2x
2 + ω3x

3.

Then, we find the optimal regime g
↑ by maximising ω1x + ω2x2 + ω3x3 over

x .

However, because there may be qualitative e!ect modification, we can
expand the model to

E(Y x | V ) = ω0 + ω1x + ω2x
2 + ω3x

3 + ω4xV ,

and for each value of V maximize ω1x + ω2x2 + ω3x3 + ω4xV over x ,
g(v) = argmax

x↓X
ω1x + ω2x2 + ω3x3 + ω4xv
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Advantages of MSMs

Easy to understand.

Can be fitted with standard statistical software.
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Precision medicine is a buzz word

My claim:
Modelling the disease process is of secondary importance in precision

medicine, except when it helps support the identification (and estimation)
of optimal regimes.
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Precision medicine is a buzz word, and the idea is simple

The idea is to tailor treatment decisions to patient characteristics.

The premise: individual heterogeneity can be leveraged to
individualize therapy.

Work on causal inference gives us theory for optimizing individual
decisions.

What if patient i receives treatment A vs. treatment B?
That is, what is the causal e!ect of taking A vs. B ...
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Algorithmic vs. human decisions

Decision rules might be algorithmically individualized.

Yet these rules will be implemented under supervision of humans
(e.g., doctors).

Are optimal algorithmic regimes better than human-decision rules?
Care providers may have information that is not recorded in the
observed data.
=↘ unmeasured confounding in the data.
So, when should we let humans override algorithmic treatment
recommendations?
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...but causal inference requires strong assumptions, no?

We need to take the causal question seriously.
Scientists who choose not to give up causal inference must
understand that, without selecting a definition of a causal e!ect, it is
impossible to evaluate whether we have reasonably estimated one.

Can we deal with unmeasured confounding?
Sometimes we can point identify e!ects in the presence of unmeasured
confounding.
Instrumental variables, front-door variables, negative controls (proximal
inference) ...
Other times we can bound the causal e!ects.

Transparency about study goals and the assumptions we make to
justify an analysis are required to discuss bias, refine our questions
and improve our answers.
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